the DCT, but some occurs in the early part of the collecting duct. Kidneys also maintain an acid-base balance by secreting excess H⁺ions Although parts of the renal tubules are named proximal and distal, in a cross-section of the kidney, the tubules are placed close together and in contact with each other and the glomerulus. This allows for exchange of chemical messengers between the different cell types. For example, the DCT ascending limb of the loop of Henle has masses of cells called **macula densa**, which are in contact with cells of the afferent arterioles called **juxtaglomerular cells**. Together, the macula densa and juxtaglomerular cells form the juxtaglomerular complex (JGC). The JGC is an endocrine structure that secretes the enzyme renin and the hormone erythropoietin. When hormones trigger the macula densa cells in the DCT due to variations in blood volume, blood pressure, or electrolyte balance, these cells can immediately communicate the problem to the capillaries in the afferent and efferent arterioles, which can constrict or relax to change the glomerular filtration rate of the kidneys. #### **CAREER CONNECTION** #### **Nephrologist** A nephrologist studies and deals with diseases of the kidneys—both those that cause kidney failure (such as diabetes) and the conditions that are produced by kidney disease (such as hypertension). Blood pressure, blood volume, and changes in electrolyte balance come under the purview of a nephrologist. Nephrologists usually work with other physicians who refer patients to them or consult with them about specific diagnoses and treatment plans. Patients are usually referred to a nephrologist for symptoms such as blood or protein in the urine, very high blood pressure, kidney stones, or renal failure. Nephrology is a subspecialty of internal medicine. To become a nephrologist, medical school is followed by additional training to become certified in internal medicine. An additional two or more years is spent specifically studying kidney disorders and their accompanying effects on the body. # **41.3 Excretion Systems** By the end of this section, you will be able to do the following: - Explain how vacuoles, present in microorganisms, work to excrete waste - Describe the way in which flame cells and nephridia in worms perform excretory functions and maintain osmotic balance - Explain how insects use Malpighian tubules to excrete wastes and maintain osmotic balance Microorganisms and invertebrate animals use more primitive and simple mechanisms to get rid of their metabolic wastes than the mammalian system of kidney and urinary function. Three excretory systems evolved in organisms before complex kidneys: vacuoles, flame cells, and Malpighian tubules. ## **Contractile Vacuoles in Microorganisms** The most fundamental feature of life is the presence of a cell. In other words, a cell is the simplest functional unit of a life. Bacteria are unicellular, prokaryotic organisms that have some of the least complex life processes in place; however, prokaryotes such as bacteria do not contain membrane-bound vacuoles. The cells of microorganisms like bacteria, protozoa, and fungi are bound by cell membranes and use them to interact with the environment. Some cells, including some leucocytes in humans, are able to engulf food by endocytosis—the formation of vesicles by involution of the cell membrane within the cells. The same vesicles are able to interact and exchange metabolites with the intracellular environment. In some unicellular eukaryotic organisms such as the amoeba, shown in Figure 41.9, cellular wastes and excess water are excreted by exocytosis, when the contractile vacuoles merge with the cell membrane and expel wastes into the environment. Contractile vacuoles (CV) should not be confused with vacuoles, which store food or water. Figure 41.9 Some unicellular organisms, such as the amoeba, ingest food by endocytosis. The food vesicle fuses with a lysosome, which digests the food. Waste is excreted by exocytosis. ### Flame Cells of Planaria and Nephridia of Worms As multicellular systems evolved to have organ systems that divided the metabolic needs of the body, individual organs evolved to perform the excretory function. Planaria are flatworms that live in freshwater. Their excretory system consists of two tubules connected to a highly branched duct system. The cells in the tubules are called **flame cells** (or **protonephridia**) because they have a cluster of cilia that looks like a flickering flame when viewed under the microscope, as illustrated in <u>Figure 41.10</u>a. The cilia propel waste matter down the tubules and out of the body through excretory pores that open on the body surface; cilia also draw water from the interstitial fluid, allowing for filtration. Any valuable metabolites are recovered by reabsorption. Flame cells are found in flatworms, including parasitic tapeworms and free-living planaria. They also maintain the organism's osmotic balance. Figure 41.10 In the excretory system of the (a) planaria, cilia of flame cells propel waste through a tubule formed by a tube cell. Tubules are connected into branched structures that lead to pores located all along the sides of the body. The filtrate is secreted through these pores. In (b) annelids such as earthworms, nephridia filter fluid from the coelom, or body cavity. Beating cilia at the opening of the nephridium draw water from the coelom into a tubule. As the filtrate passes down the tubules, nutrients and other solutes are reabsorbed by capillaries. Filtered fluid containing nitrogenous and other wastes is stored in a bladder and then secreted through a pore in the side of the body. Earthworms (annelids) have slightly more evolved excretory structures called **nephridia**, illustrated in <u>Figure 41.10</u>b. A pair of nephridia is present on each segment of the earthworm. They are similar to flame cells in that they have a tubule with cilia. Excretion occurs through a pore called the **nephridiopore**. They are more evolved than the flame cells in that they have a system for tubular reabsorption by a capillary network before excretion. # **Malpighian Tubules of Insects** Malpighian tubules are found lining the gut of some species of arthropods, such as the bee illustrated in Figure 41.11. They are usually found in pairs and the number of tubules varies with the species of insect. Malpighian tubules are convoluted, which increases their surface area, and they are lined with microvilli for reabsorption and maintenance of osmotic balance. Malpighian tubules work cooperatively with specialized glands in the wall of the rectum. Body fluids are not filtered as in the case of nephridia; urine is produced by tubular secretion mechanisms by the cells lining the Malpighian tubules that are bathed in hemolymph (a mixture of blood and interstitial fluid that is found in insects and other arthropods as well as most mollusks). Metabolic wastes like uric acid freely diffuse into the tubules. There are exchange pumps lining the tubules, which actively transport H^+ ions into the cell and K^+ or Na^+ ions out; water passively follows to form urine. The secretion of ions alters the osmotic pressure which draws water, electrolytes, and nitrogenous waste (uric acid) into the tubules. Water and electrolytes are reabsorbed when these organisms are faced with low-water environments, and uric acid is excreted as a thick paste or powder. Not dissolving wastes in water helps these organisms to conserve water; this is especially important for life in dry environments. Figure 41.11 Malpighian tubules of insects and other terrestrial arthropods remove nitrogenous wastes and other solutes from the hemolymph. Na⁺ and/or K⁺ ions are actively transported into the lumen of the tubules. Water then enters the tubules via osmosis, forming urine. The urine passes through the intestine, and into the rectum. There, nutrients diffuse back into the hemolymph. Na⁺ and/or K⁺ ions are pumped into the hemolymph, and water follows. The concentrated waste is then excreted. ### LINK TO LEARNING $See \ a \ dissected \ cockroach, including \ a \ close-up \ look \ at \ its \ Malpighian \ tubules, in this \ \underline{video} \ (https://openstax.org/l/malpighian)$ # **41.4 Nitrogenous Wastes** By the end of this section, you will be able to do the following: - Compare and contrast the way in which aquatic animals and terrestrial animals can eliminate toxic ammonia from their systems - Compare the major byproduct of ammonia metabolism in vertebrate animals to that of birds, insects, and reptiles Of the four major macromolecules in biological systems, both proteins and nucleic acids contain nitrogen. During the catabolism, or breakdown, of nitrogen-containing macromolecules, carbon, hydrogen, and oxygen are extracted and stored in the form of carbohydrates and fats. Excess nitrogen is excreted from the body. Nitrogenous wastes tend to form toxic **ammonia**, which raises the pH of body fluids. The formation of ammonia itself requires energy in the form of ATP and large quantities of water to dilute it out of a biological system. Animals that live in aquatic environments tend to release ammonia into the water. Animals that excrete ammonia are said to be **ammonotelic**. Terrestrial organisms have evolved other mechanisms to excrete nitrogenous wastes. The animals must detoxify ammonia by converting it into a relatively nontoxic form such as urea or uric acid. Mammals, including humans, produce urea, whereas reptiles and many terrestrial invertebrates produce uric acid. Animals that secrete urea as the primary nitrogenous waste material are called **ureotelic** animals. ## Nitrogenous Waste in Terrestrial Animals: The Urea Cycle The **urea cycle** is the primary mechanism by which mammals convert ammonia to urea. Urea is made in the liver and excreted in urine. The overall chemical reaction by which ammonia is converted to urea is 2 NH₃ (ammonia) + CO₂ + 3 ATP + H₂O \rightarrow H₂N-CO-NH₂ (urea) + 2 ADP + 4 P₁ + AMP.